

GenSVM Python Package

[image: Build Status]
 [https://travis-ci.org/GjjvdBurg/PyGenSVM][image: Documentation Status]
 [https://gensvm.readthedocs.io/en/latest/?badge=latest]This is the Python package for the GenSVM multiclass classifier by Gerrit
J.J. van den Burg [https://gertjanvandenburg.com] and Patrick J.F.
Groenen [https://personal.eur.nl/groenen/].

Useful links:

	PyGenSVM on GitHub [https://github.com/GjjvdBurg/PyGenSVM]

	PyGenSVM on PyPI [https://pypi.org/project/gensvm/]

	Package documentation [https://gensvm.readthedocs.io/en/latest/]

	Journal paper: GenSVM: A Generalized Multiclass Support Vector
Machine [http://www.jmlr.org/papers/v17/14-526.html] JMLR, 17(225):1−42,
2016.

	There is also an R package [https://github.com/GjjvdBurg/RGenSVM]

	Or you can directly use the C library [https://github.com/GjjvdBurg/GenSVM]

Installation

Before GenSVM can be installed, a working NumPy installation is required.
so GenSVM can be installed using the following command:

$ pip install numpy && pip install gensvm

If you encounter any errors, please open an issue on
GitHub [https://github.com/GjjvdBurg/PyGenSVM]. Don’t hesitate, you’re helping
to make this project better!

Citing

If you use this package in your research please cite the paper, for instance
using the following BibTeX entry:

@article{JMLR:v17:14-526,
 author = {{van den Burg}, G. J. J. and Groenen, P. J. F.},
 title = {{GenSVM}: A Generalized Multiclass Support Vector Machine},
 journal = {Journal of Machine Learning Research},
 year = {2016},
 volume = {17},
 number = {225},
 pages = {1-42},
 url = {http://jmlr.org/papers/v17/14-526.html}
}

Usage

The package contains two classes to fit the GenSVM model: GenSVM [https://gensvm.readthedocs.io/en/latest/#gensvm] and
GenSVMGridSearchCV [https://gensvm.readthedocs.io/en/latest/#gensvmgridsearchcv]. These classes respectively fit a single GenSVM model or
fit a series of models for a parameter grid search. The interface to these
classes is the same as that of classifiers in Scikit-Learn [http://scikit-learn.org/stable/index.html] so users
familiar with Scikit-Learn should have no trouble using this package. Below
we will show some examples of using the GenSVM classifier and the
GenSVMGridSearchCV class in practice.

In the examples we assume that we have loaded the iris
dataset [http://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html]
from Scikit-Learn as follows:

>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.preprocessing import MaxAbsScaler
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y)
>>> scaler = MaxAbsScaler().fit(X_train)
>>> X_train, X_test = scaler.transform(X_train), scaler.transform(X_test)

Note that we scale the data using the
MaxAbsScaler [http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html]
function. This scales the columns of the data matrix to [-1, 1] without
breaking sparsity. Scaling the dataset can have a significant effect on the
computation time of GenSVM and is generally recommended for
SVMs [https://stats.stackexchange.com/q/65094].

Example 1: Fitting a single GenSVM model

Let’s start by fitting the most basic GenSVM model on the training data:

>>> from gensvm import GenSVM
>>> clf = GenSVM()
>>> clf.fit(X_train, y_train)
GenSVM(coef=0.0, degree=2.0, epsilon=1e-06, gamma='auto', kappa=0.0,
kernel='linear', kernel_eigen_cutoff=1e-08, lmd=1e-05,
max_iter=100000000.0, p=1.0, random_state=None, verbose=0,
weights='unit')

With the model fitted, we can predict the test dataset:

>>> y_pred = clf.predict(X_test)

Next, we can compute a score for the predictions. The GenSVM class has a
score method which computes the
accuracy_score [http://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html]
for the predictions. In the GenSVM paper, the adjusted Rand
index [https://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index] is often
used to compare performance. We illustrate both options below (your results
may be different depending on the exact train/test split):

>>> clf.score(X_test, y_test)
1.0
>>> from sklearn.metrics import adjusted_rand_score
>>> adjusted_rand_score(clf.predict(X_test), y_test)
1.0

We can try this again by changing the model parameters, for instance we can
turn on verbosity and use the Euclidean norm in the GenSVM model by setting p = 2:

>>> clf2 = GenSVM(verbose=True, p=2)
>>> clf2.fit(X_train, y_train)
Starting main loop.
Dataset:
 n = 112
 m = 4
 K = 3
Parameters:
 kappa = 0.000000
 p = 2.000000
 lambda = 0.0000100000000000
 epsilon = 1e-06

iter = 0, L = 3.4499531579689533, Lbar = 7.3369415851139745, reldiff = 1.1266786095824437
...
Optimization finished, iter = 4046, loss = 0.0230726364692517, rel. diff. = 0.0000009998645783
Number of support vectors: 9
GenSVM(coef=0.0, degree=2.0, epsilon=1e-06, gamma='auto', kappa=0.0,
 kernel='linear', kernel_eigen_cutoff=1e-08, lmd=1e-05,
 max_iter=100000000.0, p=2, random_state=None, verbose=True,
 weights='unit')

For other parameters that can be tuned in the GenSVM model, see GenSVM [https://gensvm.readthedocs.io/en/latest/#gensvm].

Example 2: Fitting a GenSVM model with a “warm start”

One of the key features of the GenSVM classifier is that training can be
accelerated by using so-called “warm-starts”. This way the optimization can be
started in a location that is closer to the final solution than a random
starting position would be. To support this, the fit method of the GenSVM
class has an optional seed_V parameter. We’ll illustrate how this can be
used below.

We start with relatively large value for the epsilon parameter in the
model. This is the stopping parameter that determines how long the
optimization continues (and therefore how exact the fit is).

>>> clf1 = GenSVM(epsilon=1e-3)
>>> clf1.fit(X_train, y_train)
...
>>> clf1.n_iter_
163

The n_iter_ attribute tells us how many iterations the model did. Now, we
can use the solution of this model to start the training for the next model:

>>> clf2 = GenSVM(epsilon=1e-8)
>>> clf2.fit(X_train, y_train, seed_V=clf1.combined_coef_)
...
>>> clf2.n_iter_
3196

Compare this to a model with the same stopping parameter, but without the warm
start:

>>> clf2.fit(X_train, y_train)
...
>>> clf2.n_iter_
3699

So we saved about 500 iterations! This effect will be especially significant
with large datasets and when you try out many parameter configurations.
Therefore this technique is built into the GenSVMGridSearchCV [https://gensvm.readthedocs.io/en/latest/#gensvmgridsearchcv] class that can
be used to do a grid search of parameters.

Example 3: Running a GenSVM grid search

Often when we’re fitting a machine learning model such as GenSVM, we have to
try several parameter configurations to figure out which one performs best on
our given dataset. This is usually combined with cross
validation [http://scikit-learn.org/stable/modules/cross_validation.html] to
avoid overfitting. To do this efficiently and to make use of warm starts, the
GenSVMGridSearchCV [https://gensvm.readthedocs.io/en/latest/#gensvmgridsearchcv] class is available. This class works in the same way as
the
GridSearchCV [http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html]
class of Scikit-Learn [http://scikit-learn.org/stable/index.html], but uses the GenSVM C library for speed.

To do a grid search, we first have to define the parameters that we want to
vary and what values we want to try:

>>> from gensvm import GenSVMGridSearchCV
>>> param_grid = {'p': [1.0, 2.0], 'lmd': [1e-8, 1e-6, 1e-4, 1e-2, 1.0], 'kappa': [-0.9, 0.0] }

For the values that are not varied in the parameter grid, the default values
will be used. This means that if you want to change a specific value (such as
epsilon for instance), you can add this to the parameter grid as a
parameter with a single value to try (e.g. 'epsilon': [1e-8]).

Running the grid search is now straightforward:

>>> gg = GenSVMGridSearchCV(param_grid)
>>> gg.fit(X_train, y_train)
GenSVMGridSearchCV(cv=None, iid=True,
 param_grid={'p': [1.0, 2.0], 'lmd': [1e-06, 0.0001, 0.01, 1.0], 'kappa': [-0.9, 0.0]},
 refit=True, return_train_score=True, scoring=None, verbose=0)

Note that if we have set refit=True (the default), then we can use the
GenSVMGridSearchCV [https://gensvm.readthedocs.io/en/latest/#gensvmgridsearchcv] instance to predict or score using the best estimator
found in the grid search:

>>> y_pred = gg.predict(X_test)
>>> gg.score(X_test, y_test)
1.0

A nice feature borrowed from Scikit-Learn [http://scikit-learn.org/stable/index.html] is that the results from the grid
search can be represented as a pandas DataFrame:

>>> from pandas import DataFrame
>>> df = DataFrame(gg.cv_results_)

This can make it easier to explore the results of the grid search.

Known Limitations

The following are known limitations that are on the roadmap for a future
release of the package. If you need any of these features, please vote on them
on the linked GitHub issues (this can make us add them sooner!).

	Support for sparse
matrices [https://github.com/GjjvdBurg/PyGenSVM/issues/1]. NumPy supports
sparse matrices, as does the GenSVM C library. Getting them to work
together requires some additional effort. In the meantime, if you really
want to use sparse data with GenSVM (this can lead to significant
speedups!), check out the GenSVM C library.

	Specification of class misclassification
weights [https://github.com/GjjvdBurg/PyGenSVM/issues/3]. Currently,
incorrectly classification an object from class A to class C is as bad as
incorrectly classifying an object from class B to class C. Depending on the
application, this may not be the desired effect. Adding class
misclassification weights can solve this issue.

Questions and Issues

If you have any questions or encounter any issues with using this package,
please ask them on GitHub [https://github.com/GjjvdBurg/PyGenSVM].

License

This package is licensed under the GNU General Public License version 3.

Copyright (c) G.J.J. van den Burg, excluding the sections of the code that are
explicitly marked to come from Scikit-Learn.

	GenSVM Python Package
	Installation

	Citing

	Usage

	Known Limitations

	Questions and Issues

	License

API Documentation

	GenSVM

	GenSVMGridSearchCV

	Parameter Grids

	Kernels in GenSVM

Further Documentation

	Change Log
	Version 0.2.7

	Version 0.2.6

	Version 0.2.5

	Version 0.2.4

	Version 0.2.3

	Version 0.2.2

	Version 0.2.1

	Version 0.2.0

	Version 0.1.6

GenSVM Python Package

[image: Build Status]
 [https://travis-ci.org/GjjvdBurg/PyGenSVM][image: Documentation Status]
 [https://gensvm.readthedocs.io/en/latest/?badge=latest]This is the Python package for the GenSVM multiclass classifier by Gerrit
J.J. van den Burg [https://gertjanvandenburg.com] and Patrick J.F.
Groenen [https://personal.eur.nl/groenen/].

Useful links:

	PyGenSVM on GitHub [https://github.com/GjjvdBurg/PyGenSVM]

	PyGenSVM on PyPI [https://pypi.org/project/gensvm/]

	Package documentation [https://gensvm.readthedocs.io/en/latest/]

	Journal paper: GenSVM: A Generalized Multiclass Support Vector
Machine [http://www.jmlr.org/papers/v17/14-526.html] JMLR, 17(225):1−42,
2016.

	There is also an R package [https://github.com/GjjvdBurg/RGenSVM]

	Or you can directly use the C library [https://github.com/GjjvdBurg/GenSVM]

Installation

Before GenSVM can be installed, a working NumPy installation is required.
so GenSVM can be installed using the following command:

$ pip install numpy && pip install gensvm

If you encounter any errors, please open an issue on
GitHub [https://github.com/GjjvdBurg/PyGenSVM]. Don’t hesitate, you’re helping
to make this project better!

Citing

If you use this package in your research please cite the paper, for instance
using the following BibTeX entry:

@article{JMLR:v17:14-526,
 author = {{van den Burg}, G. J. J. and Groenen, P. J. F.},
 title = {{GenSVM}: A Generalized Multiclass Support Vector Machine},
 journal = {Journal of Machine Learning Research},
 year = {2016},
 volume = {17},
 number = {225},
 pages = {1-42},
 url = {http://jmlr.org/papers/v17/14-526.html}
}

Usage

The package contains two classes to fit the GenSVM model: GenSVM [https://gensvm.readthedocs.io/en/latest/#gensvm] and
GenSVMGridSearchCV [https://gensvm.readthedocs.io/en/latest/#gensvmgridsearchcv]. These classes respectively fit a single GenSVM model or
fit a series of models for a parameter grid search. The interface to these
classes is the same as that of classifiers in Scikit-Learn [http://scikit-learn.org/stable/index.html] so users
familiar with Scikit-Learn should have no trouble using this package. Below
we will show some examples of using the GenSVM classifier and the
GenSVMGridSearchCV class in practice.

In the examples we assume that we have loaded the iris
dataset [http://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html]
from Scikit-Learn as follows:

>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.preprocessing import MaxAbsScaler
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y)
>>> scaler = MaxAbsScaler().fit(X_train)
>>> X_train, X_test = scaler.transform(X_train), scaler.transform(X_test)

Note that we scale the data using the
MaxAbsScaler [http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html]
function. This scales the columns of the data matrix to [-1, 1] without
breaking sparsity. Scaling the dataset can have a significant effect on the
computation time of GenSVM and is generally recommended for
SVMs [https://stats.stackexchange.com/q/65094].

Example 1: Fitting a single GenSVM model

Let’s start by fitting the most basic GenSVM model on the training data:

>>> from gensvm import GenSVM
>>> clf = GenSVM()
>>> clf.fit(X_train, y_train)
GenSVM(coef=0.0, degree=2.0, epsilon=1e-06, gamma='auto', kappa=0.0,
kernel='linear', kernel_eigen_cutoff=1e-08, lmd=1e-05,
max_iter=100000000.0, p=1.0, random_state=None, verbose=0,
weights='unit')

With the model fitted, we can predict the test dataset:

>>> y_pred = clf.predict(X_test)

Next, we can compute a score for the predictions. The GenSVM class has a
score method which computes the
accuracy_score [http://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html]
for the predictions. In the GenSVM paper, the adjusted Rand
index [https://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index] is often
used to compare performance. We illustrate both options below (your results
may be different depending on the exact train/test split):

>>> clf.score(X_test, y_test)
1.0
>>> from sklearn.metrics import adjusted_rand_score
>>> adjusted_rand_score(clf.predict(X_test), y_test)
1.0

We can try this again by changing the model parameters, for instance we can
turn on verbosity and use the Euclidean norm in the GenSVM model by setting p = 2:

>>> clf2 = GenSVM(verbose=True, p=2)
>>> clf2.fit(X_train, y_train)
Starting main loop.
Dataset:
 n = 112
 m = 4
 K = 3
Parameters:
 kappa = 0.000000
 p = 2.000000
 lambda = 0.0000100000000000
 epsilon = 1e-06

iter = 0, L = 3.4499531579689533, Lbar = 7.3369415851139745, reldiff = 1.1266786095824437
...
Optimization finished, iter = 4046, loss = 0.0230726364692517, rel. diff. = 0.0000009998645783
Number of support vectors: 9
GenSVM(coef=0.0, degree=2.0, epsilon=1e-06, gamma='auto', kappa=0.0,
 kernel='linear', kernel_eigen_cutoff=1e-08, lmd=1e-05,
 max_iter=100000000.0, p=2, random_state=None, verbose=True,
 weights='unit')

For other parameters that can be tuned in the GenSVM model, see GenSVM [https://gensvm.readthedocs.io/en/latest/#gensvm].

Example 2: Fitting a GenSVM model with a “warm start”

One of the key features of the GenSVM classifier is that training can be
accelerated by using so-called “warm-starts”. This way the optimization can be
started in a location that is closer to the final solution than a random
starting position would be. To support this, the fit method of the GenSVM
class has an optional seed_V parameter. We’ll illustrate how this can be
used below.

We start with relatively large value for the epsilon parameter in the
model. This is the stopping parameter that determines how long the
optimization continues (and therefore how exact the fit is).

>>> clf1 = GenSVM(epsilon=1e-3)
>>> clf1.fit(X_train, y_train)
...
>>> clf1.n_iter_
163

The n_iter_ attribute tells us how many iterations the model did. Now, we
can use the solution of this model to start the training for the next model:

>>> clf2 = GenSVM(epsilon=1e-8)
>>> clf2.fit(X_train, y_train, seed_V=clf1.combined_coef_)
...
>>> clf2.n_iter_
3196

Compare this to a model with the same stopping parameter, but without the warm
start:

>>> clf2.fit(X_train, y_train)
...
>>> clf2.n_iter_
3699

So we saved about 500 iterations! This effect will be especially significant
with large datasets and when you try out many parameter configurations.
Therefore this technique is built into the GenSVMGridSearchCV [https://gensvm.readthedocs.io/en/latest/#gensvmgridsearchcv] class that can
be used to do a grid search of parameters.

Example 3: Running a GenSVM grid search

Often when we’re fitting a machine learning model such as GenSVM, we have to
try several parameter configurations to figure out which one performs best on
our given dataset. This is usually combined with cross
validation [http://scikit-learn.org/stable/modules/cross_validation.html] to
avoid overfitting. To do this efficiently and to make use of warm starts, the
GenSVMGridSearchCV [https://gensvm.readthedocs.io/en/latest/#gensvmgridsearchcv] class is available. This class works in the same way as
the
GridSearchCV [http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html]
class of Scikit-Learn [http://scikit-learn.org/stable/index.html], but uses the GenSVM C library for speed.

To do a grid search, we first have to define the parameters that we want to
vary and what values we want to try:

>>> from gensvm import GenSVMGridSearchCV
>>> param_grid = {'p': [1.0, 2.0], 'lmd': [1e-8, 1e-6, 1e-4, 1e-2, 1.0], 'kappa': [-0.9, 0.0] }

For the values that are not varied in the parameter grid, the default values
will be used. This means that if you want to change a specific value (such as
epsilon for instance), you can add this to the parameter grid as a
parameter with a single value to try (e.g. 'epsilon': [1e-8]).

Running the grid search is now straightforward:

>>> gg = GenSVMGridSearchCV(param_grid)
>>> gg.fit(X_train, y_train)
GenSVMGridSearchCV(cv=None, iid=True,
 param_grid={'p': [1.0, 2.0], 'lmd': [1e-06, 0.0001, 0.01, 1.0], 'kappa': [-0.9, 0.0]},
 refit=True, return_train_score=True, scoring=None, verbose=0)

Note that if we have set refit=True (the default), then we can use the
GenSVMGridSearchCV [https://gensvm.readthedocs.io/en/latest/#gensvmgridsearchcv] instance to predict or score using the best estimator
found in the grid search:

>>> y_pred = gg.predict(X_test)
>>> gg.score(X_test, y_test)
1.0

A nice feature borrowed from Scikit-Learn [http://scikit-learn.org/stable/index.html] is that the results from the grid
search can be represented as a pandas DataFrame:

>>> from pandas import DataFrame
>>> df = DataFrame(gg.cv_results_)

This can make it easier to explore the results of the grid search.

Known Limitations

The following are known limitations that are on the roadmap for a future
release of the package. If you need any of these features, please vote on them
on the linked GitHub issues (this can make us add them sooner!).

	Support for sparse
matrices [https://github.com/GjjvdBurg/PyGenSVM/issues/1]. NumPy supports
sparse matrices, as does the GenSVM C library. Getting them to work
together requires some additional effort. In the meantime, if you really
want to use sparse data with GenSVM (this can lead to significant
speedups!), check out the GenSVM C library.

	Specification of class misclassification
weights [https://github.com/GjjvdBurg/PyGenSVM/issues/3]. Currently,
incorrectly classification an object from class A to class C is as bad as
incorrectly classifying an object from class B to class C. Depending on the
application, this may not be the desired effect. Adding class
misclassification weights can solve this issue.

Questions and Issues

If you have any questions or encounter any issues with using this package,
please ask them on GitHub [https://github.com/GjjvdBurg/PyGenSVM].

License

This package is licensed under the GNU General Public License version 3.

Copyright (c) G.J.J. van den Burg, excluding the sections of the code that are
explicitly marked to come from Scikit-Learn.

GenSVM

	
class gensvm.core.GenSVM(p=1.0, lmd=1e-05, kappa=0.0, epsilon=1e-06, weights='unit', kernel='linear', gamma='auto', coef=1.0, degree=2.0, kernel_eigen_cutoff=1e-08, verbose=0, random_state=None, max_iter=100000000.0)

	Generalized Multiclass Support Vector Machine Classification.

This class implements the basic GenSVM classifier. GenSVM is a generalized
multiclass SVM which is flexible in the weighting of misclassification
errors. It is this flexibility that makes it perform well on diverse
datasets.

The fit() and predict() methods of this class
use the GenSVM C library for the actual computations.

	Parameters

	
	p (float, optional (default=1.0)) – Parameter for the L_p norm of the loss function (1.0 <= p <= 2.0)

	lmd (float, optional (default=1e-5)) – Parameter for the regularization term of the loss function (lmd > 0)

	kappa (float, optional (default=0.0)) – Parameter for the hinge function in the loss function (kappa > -1.0)

	weights (string, optional (default='unit')) – Type of sample weights to use. Options are ‘unit’ for unit weights and
‘group’ for group size correction weights (equation 4 in the paper).

It is also possible to provide an explicit vector of sample weights
through the fit() method. If so, it will override the
setting provided here.

	kernel (string, optional (default='linear')) – Specify the kernel type to use in the classifier. It must be one of
‘linear’, ‘poly’, ‘rbf’, or ‘sigmoid’.

	gamma (float, optional (default='auto')) – Kernel parameter for the rbf, poly, and sigmoid kernel. If gamma is
‘auto’ then 1/n_features will be used. See Kernels in GenSVM [https://gensvm.readthedocs.io/en/latest/#kernels-in-gensvm] for the exact implementation of the kernels.

	coef (float, optional (default=1.0)) – Kernel parameter for the poly and sigmoid kernel. See Kernels in
GenSVM [https://gensvm.readthedocs.io/en/latest/#kernels-in-gensvm] for the exact implementation of the kernels.

	degree (float, optional (default=2.0)) – Kernel parameter for the poly kernel. See Kernels in GenSVM [https://gensvm.readthedocs.io/en/latest/#kernels-in-gensvm] for the exact implementation of the kernels.

	kernel_eigen_cutoff (float, optional (default=1e-8)) – Cutoff point for the reduced eigendecomposition used with nonlinear
GenSVM. Eigenvectors for which the ratio between their corresponding
eigenvalue and the largest eigenvalue is smaller than the cutoff will
be dropped.

	verbose (int, (default=0)) – Enable verbose output

	random_state (None, int, instance of RandomState) – The seed for the random number generation used for initialization where
necessary. See the documentation of
sklearn.utils.check_random_state for more info.

	max_iter (int, (default=1e8)) – The maximum number of iterations to be run.

	
coef_

	array, shape = [n_features, n_classes-1] – Weights assigned to the features (coefficients in the primal problem)

	
intercept_

	array, shape = [n_classes-1] – Constants in the decision function

	
combined_coef_

	array, shape = [n_features+1, n_classes-1] – Combined weights matrix for the seed_V parameter to the fit method

	
n_iter_

	int – The number of iterations that were run during training.

	
n_support_

	int – The number of support vectors that were found

	
SVs_

	array, shape = [n_observations,] – Index vector that marks the support vectors (1 = SV, 0 = no SV)

See also

	GenSVMGridSearchCV:

	Helper class to run an efficient grid search for GenSVM.

	
fit(X, y, sample_weight=None, seed_V=None)

	Fit the GenSVM model on the given data

The model can be fit with or without a seed matrix (seed_V). This can
be used to provide warm starts for the algorithm.

	Parameters

	
	X (array, shape = (n_observations, n_features)) – The input data. It is expected that only numeric data is given.

	y (array, shape = (n_observations,)) – The label vector, labels can be numbers or strings.

	sample_weight (array, shape = (n_observations,)) – Array of weights that are assigned to individual samples. If not
provided, then the weight specification in the constructor is used
(‘unit’ or ‘group’).

	seed_V (array, shape = (n_features+1, n_classes-1), optional) – Seed coefficient array to use as a warm start for the optimization.
It can for instance be the combined_coef_ attribute of a different GenSVM model.
This is only supported for the linear kernel.

NOTE: the size of the seed_V matrix is n_features+1 by n_classes - 1.
The number of columns of seed_V is leading for the number of
classes in the model. For example, if y contains 3 different
classes and seed_V has 3 columns, we assume that there are
actually 4 classes in the problem but one class is just represented
in this training data. This can be useful for problems were a
certain class has only a few samples.

	Returns

	self – Returns self.

	Return type

	object

	
predict(X, trainX=None)

	Predict the class labels on the given data

	Parameters

	
	X (array, shape = [n_test_samples, n_features]) – Data for which to predict the labels

	trainX (array, shape = [n_train_samples, n_features]) – Only for nonlinear prediction with kernels: the training data used
to train the model.

	Returns

	y_pred – Predicted class labels of the data in X.

	Return type

	array, shape = (n_samples,)

GenSVMGridSearchCV

	
class gensvm.gridsearch.GenSVMGridSearchCV(param_grid='tiny', scoring=None, iid=True, cv=None, refit=True, verbose=0, return_train_score=True)

	GenSVM cross validated grid search

This class implements efficient GenSVM grid search with cross validation.
One of the strong features of GenSVM is that seeding the classifier
properly can greatly reduce total training time. This class ensures that
the grid search is done in the most efficient way possible.

The implementation of this class is based on the GridSearchCV [http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html] class in
scikit-learn. The documentation of the various parameters is therefore
mostly the same. This is done to provide the user with a familiar and
easy-to-use interface to doing a grid search with GenSVM. A separate class
was needed to benefit from the fast low-level C implementation of grid
search in the GenSVM library.

	Parameters

	
	param_grid (string, dict, or list of dicts) – If a string, it must be either ‘tiny’, ‘small’, or ‘full’ to load the
predefined parameter grids (see the functions load_grid_tiny(),
load_grid_small(), and load_grid_full()).

Otherwise, a dictionary of parameter names (strings) as keys and lists
of parameter settings to evaluate as values, or a list of such dicts.
The GenSVM model will be evaluated at all combinations of the
parameters.

	scoring (string, callable, list/tuple, dict or None) – A single string (see The scoring parameter: defining model evaluation rules [https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter]) or a callable (see
Defining your scoring strategy from metric functions [https://scikit-learn.org/stable/modules/model_evaluation.html#scoring]) to evaluate the predictions on the test set.

For evaluating multiple metrics, either give a list of (unique) strings
or a dict with names as keys and callables as values.

NOTE that when using custom scorers, each scorer should return a single
value. Metric functions returning a list/array of values can be wrapped
into multiple scorers that return one value each.

If None, the accuracy_score [http://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html] is used.

	iid (boolean, default=True) – If True, the data is assumed to be identically distributed across the
folds, and the loss minimized is the total loss per sample and not the
mean loss across the folds.

	cv (int, cross-validation generator or an iterable, optional) – Determines the cross-validation splitting strategy. Possible inputs for
cv are:

	None, to use the default 5-fold cross validation,

	integer, to specify the number of folds in a (Stratified)KFold,

	An object to be used as a cross-validation generator.

	An iterable yielding train, test splits.

For integer/None inputs, StratifiedKFold [https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html#sklearn.model_selection.StratifiedKFold] is used. In all other
cases, KFold [https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html#sklearn.model_selection.KFold] is used.

Refer to the scikit-learn User Guide on cross validation [http://scikit-learn.org/stable/modules/cross_validation.html] for the
various strategies that can be used here.

NOTE: At the moment, the ShuffleSplit and StratifiedShuffleSplit are
not supported in this class. If you need these, you can use the GenSVM
classifier directly with the GridSearchCV object from scikit-learn.
(these methods require significant changes in the low-level library
before they can be supported).

	refit (boolean, or string, default=True) – Refit the GenSVM estimator with the best found parameters on the whole
dataset.

For multiple metric evaluation, this needs to be a string denoting the
scorer to be used to find the best parameters for refitting the
estimator at the end.

The refitted estimator is made available at the :attr:best_estimator_
<.GenSVMGridSearchCV.best_estimator_> attribute and allows the user to
use the predict() method directly on this
GenSVMGridSearchCV instance.

Also for multiple metric evaluation, the attributes best_index_, best_score_ and best_params_ will only be available if refit
is set and all of them will be determined w.r.t this specific scorer.

See scoring parameter to know more about multiple metric
evaluation.

	verbose (integer) – Controls the verbosity: the higher, the more messages.

	return_train_score (boolean, default=True) – If False, the cv_results_
attribute will not include training scores.

Examples

>>> from gensvm import GenSVMGridSearchCV
>>> from sklearn.datasets import load_iris
>>> iris = load_iris()
>>> param_grid = {'p': [1.0, 2.0], 'kappa': [-0.9, 0.0, 1.0]}
>>> clf = GenSVMGridSearchCV(param_grid)
>>> clf.fit(iris.data, iris.target)
GenSVMGridSearchCV(cv=None, iid=True,
 param_grid={'p': [1.0, 2.0], 'kappa': [-0.9, 0.0, 1.0]},
 refit=True, return_train_score=True, scoring=None, verbose=0)

	
cv_results_

	dict of numpy (masked) ndarrays – A dict with keys as column headers and values as columns, that can be
imported into a pandas DataFrame [https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html].

For instance the below given table

	param_kernel

	param_gamma

	param_degree

	split0_test_score

	…

	rank_t…

	‘poly’

	–

	2

	0.8

	…

	2

	‘poly’

	–

	3

	0.7

	…

	4

	‘rbf’

	0.1

	–

	0.8

	…

	3

	‘rbf’

	0.2

	–

	0.9

	…

	1

will be represented by a cv_results_ dict of:

{
'param_kernel': masked_array(data = ['poly', 'poly', 'rbf', 'rbf'],
 mask = [False False False False]...)
'param_gamma': masked_array(data = [-- -- 0.1 0.2],
 mask = [True True False False]...),
'param_degree': masked_array(data = [2.0 3.0 -- --],
 mask = [False False True True]...),
'split0_test_score' : [0.8, 0.7, 0.8, 0.9],
'split1_test_score' : [0.82, 0.5, 0.7, 0.78],
'mean_test_score' : [0.81, 0.60, 0.75, 0.82],
'std_test_score' : [0.02, 0.01, 0.03, 0.03],
'rank_test_score' : [2, 4, 3, 1],
'split0_train_score' : [0.8, 0.9, 0.7],
'split1_train_score' : [0.82, 0.5, 0.7],
'mean_train_score' : [0.81, 0.7, 0.7],
'std_train_score' : [0.03, 0.03, 0.04],
'mean_fit_time' : [0.73, 0.63, 0.43, 0.49],
'std_fit_time' : [0.01, 0.02, 0.01, 0.01],
'mean_score_time' : [0.007, 0.06, 0.04, 0.04],
'std_score_time' : [0.001, 0.002, 0.003, 0.005],
'params' : [{'kernel': 'poly', 'degree': 2}, ...],
}

NOTE:

The key 'params' is used to store a list of parameter settings
dicts for all the parameter candidates.

The mean_fit_time, std_fit_time, mean_score_time and
std_score_time are all in seconds.

For multi-metric evaluation, the scores for all the scorers are
available in the cv_results_
dict at the keys ending with that scorer’s name ('_<scorer_name>')
instead of '_score' shown above. (‘split0_test_precision’,
‘mean_train_precision’ etc.)

	
best_estimator_

	estimator or dict – Estimator that was chosen by the search, i.e. estimator which gave
highest score (or smallest loss if specified) on the left out data. Not
available if refit=False.

See refit parameter for more information on allowed values.

	
best_score_

	float – Mean cross-validated score of the best_estimator

For multi-metric evaluation, this is present only if refit is
specified.

	
best_params_

	dict – Parameter setting that gave the best results on the hold out data.

For multi-metric evaluation, this is present only if refit is
specified.

	
best_index_

	int – The index (of the cv_results_ arrays) which corresponds to the best
candidate parameter setting.

The dict at search.cv_results_['params'][search.best_index_] gives
the parameter setting for the best model, that gives the highest mean
score (search.best_score_).

For multi-metric evaluation, this is present only if refit is
specified.

	
scorer_

	function or a dict – Scorer function used on the held out data to choose the best parameters
for the model.

For multi-metric evaluation, this attribute holds the validated
scoring dict which maps the scorer key to the scorer callable.

	
n_splits_

	int – The number of cross-validation splits (folds/iterations).

Notes

The parameters selected are those that maximize the score of the left out
data, unless an explicit score is passed in which case it is used instead.

See also

	ParameterGrid [http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ParameterGrid.html]:

	Generates all the combinations of a hyperparameter grid.

	GenSVM:

	The GenSVM classifier

	
fit(X, y, groups=None)

	Run GenSVM grid search with all sets of parameters

	Parameters

	
	X (array-like, shape = (n_samples, n_features)) – Training data, where n_samples is the number of observations and
n_features is the number of features.

	y (array-like, shape = (n_samples,)) – Target vector for the training data.

	groups (array-like, with shape (n_samples,), optional) – Group labels for the samples used while splitting the dataset into
train/test sets.

	Returns

	self – Return self.

	Return type

	object

	
predict(X, trainX=None)

	Predict the class labels on the test data

	Parameters

	
	X (array-like, shape = (n_samples, n_features)) – Test data, where n_samples is the number of observations and
n_features is the number of features.

	trainX (array, shape = [n_train_samples, n_features]) – Only for nonlinear prediction with kernels: the training data used
to train the model.

	Returns

	y_pred – Predicted class labels of the data in X.

	Return type

	array-like, shape = (n_samples,)

	
score(X, y)

	Compute the score on the test data given the true labels

	Parameters

	
	X (array-like, shape = (n_samples, n_features)) – Test data, where n_samples is the number of observations and
n_features is the number of features.

	y (array-like, shape = (n_samples,)) – True labels for the test data.

	Returns

	score

	Return type

	float

Parameter Grids

	
gensvm.gridsearch.load_grid_tiny()

	Load a tiny parameter grid for the GenSVM grid search

This function returns a parameter grid to use in the GenSVM grid search.
This grid was obtained by analyzing the experiments done for the GenSVM
paper and selecting the configurations that achieve accuracy within the
95th percentile on over 90% of the datasets. It is a good start for a
parameter search with a reasonably high chance of achieving good
performance on most datasets.

Note that this grid is only tested to work well in combination with the
linear kernel.

	Returns

	pg – List of 10 parameter configurations that are likely to perform
reasonably well.

	Return type

	list

	
gensvm.gridsearch.load_grid_small()

	Load a small parameter grid for GenSVM

This function loads a default parameter grid to use for the #’ GenSVM
gridsearch. It contains all possible combinations of the following #’
parameter sets:

pg = {
 'p': [1.0, 1.5, 2.0],
 'lmd': [1e-8, 1e-6, 1e-4, 1e-2, 1],
 'kappa': [-0.9, 0.5, 5.0],
 'weights': ['unit', 'group'],
}

	Returns

	pg – Mapping from parameters to lists of values for those parameters. To be
used as input for the GenSVMGridSearchCV class.

	Return type

	dict

	
gensvm.gridsearch.load_grid_full()

	Load the full parameter grid for GenSVM

This is the parameter grid used in the GenSVM paper to run the grid search
experiments. It uses a large grid for the lmd regularization parameter
and converges with a stopping criterion of 1e-8. This is a relatively
small stopping criterion and in practice good classification results can be
obtained by using a larger stopping criterion.

The function returns the following grid:

pg = {
 'lmd': [pow(2, x) for x in range(-18, 19, 2)],
 'kappa': [-0.9, 0.5, 5.0],
 'p': [1.0, 1.5, 2.0],
 'weights': ['unit', 'group'],
 'epsilon': [1e-8],
 'kernel': ['linear']
 }

	Returns

	pg – Mapping from parameters to lists of values for those parameters. To be
used as input for the GenSVMGridSearchCV class.

	Return type

	dict

Kernels in GenSVM

Kernels in GenSVM are implemented as follows.

	Radial Basis Function (RBF):

\[k(x_1, x_2) = \exp(-\gamma \| x_1 - x_2 \|^2)\]

	Polynomial:

\[k(x_1, x_2) = (\gamma x_1'x_2 + coef)^{degree}\]

	Sigmoid:

\[k(x_1, x_2) = \tanh(\gamma x_1'x_2 + coef)\]

Change Log

Version 0.2.7

	Deal with various deprecated features of sklearn

Version 0.2.6

	Minor fixes to fix description on PyPI

Version 0.2.5

	Build platform wheels for Linux and MacOS

	Minor improvements to the package

Version 0.2.4

	Add support for retrieving support vectors

Version 0.2.3

	Bugfix for prediction with gamma = ‘auto’

Version 0.2.2

	Add error when unsupported ShuffleSplits are used

Version 0.2.1

	Update docs

	Speed up unit tests

Version 0.2.0

	Add support for interrupting training and retreiving partial results

	Allow specification of sample weights in GenSVM.fit()

	Extract per-split durations from grid search results

	Add pre-defined parameter grids ‘tiny’, ‘small’, and ‘full’

	Add code for prediction with kernels

	Add unit tests

	Change default coef in poly kernel to 1.0 for inhomogeneous kernel

	Minor bugfixes, documentation improvement, and code cleanup

	Add continuous integration through Travis-CI.

Version 0.1.6

	Fix segfault caused by error function in C library.

	Add “load_default_grid” function to gensvm.gridsearch

Index

 B
 | C
 | I
 | N
 | S

B

 	
 	best_estimator_ (gensvm.gridsearch.GenSVMGridSearchCV attribute)

 	best_index_ (gensvm.gridsearch.GenSVMGridSearchCV attribute)

 	
 	best_params_ (gensvm.gridsearch.GenSVMGridSearchCV attribute)

 	best_score_ (gensvm.gridsearch.GenSVMGridSearchCV attribute)

C

 	
 	coef_ (gensvm.core.GenSVM attribute)

 	
 	combined_coef_ (gensvm.core.GenSVM attribute)

 	cv_results_ (gensvm.gridsearch.GenSVMGridSearchCV attribute)

I

 	
 	intercept_ (gensvm.core.GenSVM attribute)

N

 	
 	n_iter_ (gensvm.core.GenSVM attribute)

 	
 	n_splits_ (gensvm.gridsearch.GenSVMGridSearchCV attribute)

 	n_support_ (gensvm.core.GenSVM attribute)

S

 	
 	scorer_ (gensvm.gridsearch.GenSVMGridSearchCV attribute)

 	
 	SVs_ (gensvm.core.GenSVM attribute)

Change Log

Version 0.2.7

	Deal with various deprecated features of sklearn

Version 0.2.6

	Minor fixes to fix description on PyPI

Version 0.2.5

	Build platform wheels for Linux and MacOS

	Minor improvements to the package

Version 0.2.4

	Add support for retrieving support vectors

Version 0.2.3

	Bugfix for prediction with gamma = ‘auto’

Version 0.2.2

	Add error when unsupported ShuffleSplits are used

Version 0.2.1

	Update docs

	Speed up unit tests

Version 0.2.0

	Add support for interrupting training and retreiving partial results

	Allow specification of sample weights in GenSVM.fit()

	Extract per-split durations from grid search results

	Add pre-defined parameter grids ‘tiny’, ‘small’, and ‘full’

	Add code for prediction with kernels

	Add unit tests

	Change default coef in poly kernel to 1.0 for inhomogeneous kernel

	Minor bugfixes, documentation improvement, and code cleanup

	Add continuous integration through Travis-CI.

Version 0.1.6

	Fix segfault caused by error function in C library.

	Add “load_default_grid” function to gensvm.gridsearch

GenSVM Python Package

[image: Build Status]
 [https://travis-ci.org/GjjvdBurg/PyGenSVM][image: Documentation Status]
 [https://gensvm.readthedocs.io/en/latest/?badge=latest]This is the Python package for the GenSVM multiclass classifier by Gerrit
J.J. van den Burg [https://gertjanvandenburg.com] and Patrick J.F.
Groenen [https://personal.eur.nl/groenen/].

Useful links:

	PyGenSVM on GitHub [https://github.com/GjjvdBurg/PyGenSVM]

	PyGenSVM on PyPI [https://pypi.org/project/gensvm/]

	Package documentation [https://gensvm.readthedocs.io/en/latest/]

	Journal paper: GenSVM: A Generalized Multiclass Support Vector
Machine [http://www.jmlr.org/papers/v17/14-526.html] JMLR, 17(225):1−42,
2016.

	There is also an R package [https://github.com/GjjvdBurg/RGenSVM]

	Or you can directly use the C library [https://github.com/GjjvdBurg/GenSVM]

Installation

Before GenSVM can be installed, a working NumPy installation is required.
so GenSVM can be installed using the following command:

$ pip install numpy && pip install gensvm

If you encounter any errors, please open an issue on
GitHub [https://github.com/GjjvdBurg/PyGenSVM]. Don’t hesitate, you’re helping
to make this project better!

Citing

If you use this package in your research please cite the paper, for instance
using the following BibTeX entry:

@article{JMLR:v17:14-526,
 author = {{van den Burg}, G. J. J. and Groenen, P. J. F.},
 title = {{GenSVM}: A Generalized Multiclass Support Vector Machine},
 journal = {Journal of Machine Learning Research},
 year = {2016},
 volume = {17},
 number = {225},
 pages = {1-42},
 url = {http://jmlr.org/papers/v17/14-526.html}
}

Usage

The package contains two classes to fit the GenSVM model: GenSVM [https://gensvm.readthedocs.io/en/latest/#gensvm] and
GenSVMGridSearchCV [https://gensvm.readthedocs.io/en/latest/#gensvmgridsearchcv]. These classes respectively fit a single GenSVM model or
fit a series of models for a parameter grid search. The interface to these
classes is the same as that of classifiers in Scikit-Learn [http://scikit-learn.org/stable/index.html] so users
familiar with Scikit-Learn should have no trouble using this package. Below
we will show some examples of using the GenSVM classifier and the
GenSVMGridSearchCV class in practice.

In the examples we assume that we have loaded the iris
dataset [http://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html]
from Scikit-Learn as follows:

>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.preprocessing import MaxAbsScaler
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y)
>>> scaler = MaxAbsScaler().fit(X_train)
>>> X_train, X_test = scaler.transform(X_train), scaler.transform(X_test)

Note that we scale the data using the
MaxAbsScaler [http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html]
function. This scales the columns of the data matrix to [-1, 1] without
breaking sparsity. Scaling the dataset can have a significant effect on the
computation time of GenSVM and is generally recommended for
SVMs [https://stats.stackexchange.com/q/65094].

Example 1: Fitting a single GenSVM model

Let’s start by fitting the most basic GenSVM model on the training data:

>>> from gensvm import GenSVM
>>> clf = GenSVM()
>>> clf.fit(X_train, y_train)
GenSVM(coef=0.0, degree=2.0, epsilon=1e-06, gamma='auto', kappa=0.0,
kernel='linear', kernel_eigen_cutoff=1e-08, lmd=1e-05,
max_iter=100000000.0, p=1.0, random_state=None, verbose=0,
weights='unit')

With the model fitted, we can predict the test dataset:

>>> y_pred = clf.predict(X_test)

Next, we can compute a score for the predictions. The GenSVM class has a
score method which computes the
accuracy_score [http://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html]
for the predictions. In the GenSVM paper, the adjusted Rand
index [https://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index] is often
used to compare performance. We illustrate both options below (your results
may be different depending on the exact train/test split):

>>> clf.score(X_test, y_test)
1.0
>>> from sklearn.metrics import adjusted_rand_score
>>> adjusted_rand_score(clf.predict(X_test), y_test)
1.0

We can try this again by changing the model parameters, for instance we can
turn on verbosity and use the Euclidean norm in the GenSVM model by setting p = 2:

>>> clf2 = GenSVM(verbose=True, p=2)
>>> clf2.fit(X_train, y_train)
Starting main loop.
Dataset:
 n = 112
 m = 4
 K = 3
Parameters:
 kappa = 0.000000
 p = 2.000000
 lambda = 0.0000100000000000
 epsilon = 1e-06

iter = 0, L = 3.4499531579689533, Lbar = 7.3369415851139745, reldiff = 1.1266786095824437
...
Optimization finished, iter = 4046, loss = 0.0230726364692517, rel. diff. = 0.0000009998645783
Number of support vectors: 9
GenSVM(coef=0.0, degree=2.0, epsilon=1e-06, gamma='auto', kappa=0.0,
 kernel='linear', kernel_eigen_cutoff=1e-08, lmd=1e-05,
 max_iter=100000000.0, p=2, random_state=None, verbose=True,
 weights='unit')

For other parameters that can be tuned in the GenSVM model, see GenSVM [https://gensvm.readthedocs.io/en/latest/#gensvm].

Example 2: Fitting a GenSVM model with a “warm start”

One of the key features of the GenSVM classifier is that training can be
accelerated by using so-called “warm-starts”. This way the optimization can be
started in a location that is closer to the final solution than a random
starting position would be. To support this, the fit method of the GenSVM
class has an optional seed_V parameter. We’ll illustrate how this can be
used below.

We start with relatively large value for the epsilon parameter in the
model. This is the stopping parameter that determines how long the
optimization continues (and therefore how exact the fit is).

>>> clf1 = GenSVM(epsilon=1e-3)
>>> clf1.fit(X_train, y_train)
...
>>> clf1.n_iter_
163

The n_iter_ attribute tells us how many iterations the model did. Now, we
can use the solution of this model to start the training for the next model:

>>> clf2 = GenSVM(epsilon=1e-8)
>>> clf2.fit(X_train, y_train, seed_V=clf1.combined_coef_)
...
>>> clf2.n_iter_
3196

Compare this to a model with the same stopping parameter, but without the warm
start:

>>> clf2.fit(X_train, y_train)
...
>>> clf2.n_iter_
3699

So we saved about 500 iterations! This effect will be especially significant
with large datasets and when you try out many parameter configurations.
Therefore this technique is built into the GenSVMGridSearchCV [https://gensvm.readthedocs.io/en/latest/#gensvmgridsearchcv] class that can
be used to do a grid search of parameters.

Example 3: Running a GenSVM grid search

Often when we’re fitting a machine learning model such as GenSVM, we have to
try several parameter configurations to figure out which one performs best on
our given dataset. This is usually combined with cross
validation [http://scikit-learn.org/stable/modules/cross_validation.html] to
avoid overfitting. To do this efficiently and to make use of warm starts, the
GenSVMGridSearchCV [https://gensvm.readthedocs.io/en/latest/#gensvmgridsearchcv] class is available. This class works in the same way as
the
GridSearchCV [http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html]
class of Scikit-Learn [http://scikit-learn.org/stable/index.html], but uses the GenSVM C library for speed.

To do a grid search, we first have to define the parameters that we want to
vary and what values we want to try:

>>> from gensvm import GenSVMGridSearchCV
>>> param_grid = {'p': [1.0, 2.0], 'lmd': [1e-8, 1e-6, 1e-4, 1e-2, 1.0], 'kappa': [-0.9, 0.0] }

For the values that are not varied in the parameter grid, the default values
will be used. This means that if you want to change a specific value (such as
epsilon for instance), you can add this to the parameter grid as a
parameter with a single value to try (e.g. 'epsilon': [1e-8]).

Running the grid search is now straightforward:

>>> gg = GenSVMGridSearchCV(param_grid)
>>> gg.fit(X_train, y_train)
GenSVMGridSearchCV(cv=None, iid=True,
 param_grid={'p': [1.0, 2.0], 'lmd': [1e-06, 0.0001, 0.01, 1.0], 'kappa': [-0.9, 0.0]},
 refit=True, return_train_score=True, scoring=None, verbose=0)

Note that if we have set refit=True (the default), then we can use the
GenSVMGridSearchCV [https://gensvm.readthedocs.io/en/latest/#gensvmgridsearchcv] instance to predict or score using the best estimator
found in the grid search:

>>> y_pred = gg.predict(X_test)
>>> gg.score(X_test, y_test)
1.0

A nice feature borrowed from Scikit-Learn [http://scikit-learn.org/stable/index.html] is that the results from the grid
search can be represented as a pandas DataFrame:

>>> from pandas import DataFrame
>>> df = DataFrame(gg.cv_results_)

This can make it easier to explore the results of the grid search.

Known Limitations

The following are known limitations that are on the roadmap for a future
release of the package. If you need any of these features, please vote on them
on the linked GitHub issues (this can make us add them sooner!).

	Support for sparse
matrices [https://github.com/GjjvdBurg/PyGenSVM/issues/1]. NumPy supports
sparse matrices, as does the GenSVM C library. Getting them to work
together requires some additional effort. In the meantime, if you really
want to use sparse data with GenSVM (this can lead to significant
speedups!), check out the GenSVM C library.

	Specification of class misclassification
weights [https://github.com/GjjvdBurg/PyGenSVM/issues/3]. Currently,
incorrectly classification an object from class A to class C is as bad as
incorrectly classifying an object from class B to class C. Depending on the
application, this may not be the desired effect. Adding class
misclassification weights can solve this issue.

Questions and Issues

If you have any questions or encounter any issues with using this package,
please ask them on GitHub [https://github.com/GjjvdBurg/PyGenSVM].

License

This package is licensed under the GNU General Public License version 3.

Copyright (c) G.J.J. van den Burg, excluding the sections of the code that are
explicitly marked to come from Scikit-Learn.

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 GenSVM Python Package

 		
 GenSVM Python Package

 		
 Installation

 		
 Citing

 		
 Usage

 		
 Example 1: Fitting a single GenSVM model

 		
 Example 2: Fitting a GenSVM model with a “warm start”

 		
 Example 3: Running a GenSVM grid search

 		
 Known Limitations

 		
 Questions and Issues

 		
 License

 		
 GenSVM

 		
 GenSVMGridSearchCV

 		
 Parameter Grids

 		
 Kernels in GenSVM

 		
 Change Log

 		
 Version 0.2.7

 		
 Version 0.2.6

 		
 Version 0.2.5

 		
 Version 0.2.4

 		
 Version 0.2.3

 		
 Version 0.2.2

 		
 Version 0.2.1

 		
 Version 0.2.0

 		
 Version 0.1.6

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

